Перевести страницу


EMBL to PDB Converter

2D & 3D Genetic code


2017          2018          2020            2 0 2 3



Music of a Proteine



Read the monograph

 


tttttt


 




Пикософт

Подписаться на RSS





Программа Пикотех помогает биологам делать научные открытия


А.Ю.Кушелев, биография




Монография, статьи


1. А.Кушелев, В.Соколик, Геометрия живого наномира. Пикотехнология белков. 2016,   LAP LAMBERT Academic Publishing  ISBN  978-3-659-928628   

ЧИТАТЬ ОНЛАЙН   Монография посвящена 3D-структуре молекул и полимеров живых систем. Дан анализ современного понимания таких фундаментальных понятий, как физический объём атома, химическая связь, генетический код. На основе статистического анализа экспериментальных данных о структуре белка обосновано кодирование его вторичной структуры и структурного полипептидного шаблона в геноме. Предложена дополненная таблица генетического кода белков и пептидов, которая легла в основу геометрического алгоритма программ декодирования структурного шаблона белка Molecular Constructor и Picotech. Сформулирована гипотеза о перекодировании информации третьего нуклеотида кодона в соответствующий ротамер пептидной связи непосредственно 3D-структурой изоакцепторной тРНК. Математический анализ сопряженности значений углов φ и ψ (карта Рамачандрана) выявил периодичность их изменения, что позволило обосновать механизм посттрансляционного фолдинга белка.
Книга рассчитана на специалистов, занимающихся исследованиями в области молекулярной биологии, биоинформатики, биохимии, биофизики.
Табл.: 36 . Ил.:117 . Библиогр.: 227 назв.

                                                                                                                                  

2. Кушелев А.Ю., Соколик В.В. Пикотехнология – новый подход в моделировании пространственной структуры белка / Заочная Международная научно-практическая конференция «Современная наука: тенденции развития» (24 января 2012), Краснодар: НИЦ Априори. – 2012. – С.203-207.


3. Кушелев А.Ю., Полищук С.Е., Неделько Е.В. и др. Построения масштабной модели структуры белка. // "Актуальные проблемы современной науки". - 2002, N2 март-апрель. - с.236-240.


4. Кушелев А.Ю. и др. Построение масштабной модели пространственной структуры белка по его нуклеотидной последовательности. // ...


5. Kushelev A.Y., Pisarzhevsky S.A. The construction of the scale model of the spatial structure of the protein on its nucleotide sequence. // "Молекулярная биология" (не опубликована).


6. Кожевников Д.Н. Кольцегранные модели молекулЖурн. физ. химии. - 1996. - Т. 70. - No 6. - С. 1134-1137.


7. Кожевников Д.Н. Использование моделирования в обучении в контексте понимания и усвоения категории сложности. // Вестник Московского университета. Серия 20. Педагогическое образование. - 2015, N3 (июль-сентябрь). - с.21-34. -


8. Назарова Т.С., Тихомирова К.М., Кудина И.Ю., Кожевников Д.Н. Теоретические основы стандарта учебно-материальной базы общего среднего образования. (Федер.гос. науч. учреждение "Ин-т содерж. и методов обучения" РАО). - М.: Нестор-История, 2014. - 168с.


9. Кожевников Д.Н. Криволинейные контурные конструкторы "Крикоко" и "Тайкон". Методические рекомендации по использованию. - м.: МГДД(ЮТ)Т, 2013. - 72с.


10. КОЖЕВНИКОВ Дмитрий Николаевич. Создание и использование комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы. 13.00.02 – теория и методика обучения и воспитания (химии в общеобразовательной школе) (по педагогическим наукам). Диссертация на соискание ученой степени кандидата педагогических наук. Научный руководитель: член-корреспондент РАО, доктор педагогических наук, профессор Назарова Т. С. Москва - 2004 


11. V.V.Sokolik. “Implementation of the 3D genetic code of proteins is isoacceptor tRNAs”, Journal Medical and Clinical Chemistry. 2019.V. 21, No. 3 (Appendix). P. 46-47. ISSN 2410-681X)


12. В. Соколик. СТРУКТУРНЫЕ ПРЕДПОСЫЛКИКИ АГРЕГАЦИИ БЕТА-АМИЛОИДНОГО ПЕПТИДА Украiнський вiсник психоневрологii – 2009. – Т.46, вип.8.- С. 116—121.


13. Sokolik. Modeling of the 3D structure of apoliprotezin E3 under its determining nucleotide sequence. III International Conference "Actual problems of biology, nanotechnology and medicine". Theses of reports (October 1-4, 2009), Rostov-on-Don. - P. 54.


 14. V.Sokolik. ALGORITHM OF PROTEIN STRUCTURAL TEMPLATE DECODING ACCODING TO ITS DETERMINED NUCLEOTIDE SEQUENCE

 

15. В.В. Соколик "Никакой дополнительной информации, большей, чем та, что содержится в ДНК, для сворачивания белка не требуется" Матеріали ХІ Укріїнського біохімічного конгресу (06-10 жовтня 2014), The UkrainianBiochemical Journal, 2014, V. 86, №5 (Supplement 1), P. 37-38.

 

16. Соколик В.В. Пространственная структура гомологов основного актина и бета-актина 1 различна. - Материалы I Международной научно-практической конференции "Наука и современность - 2010" в 3-х частях (Под общ. ред. С.С.Чернова). Часть 1. - Новосибирск: Сибпринт, 2010. - с.41-46(278с.).

 

17. В.В. Соколик "Никакой дополнительной информации, большей, чем та, что содержится в ДНК, для сворачивания белка не требуется" Матеріали ХІ Укріїнського біохімічного конгресу (06-10 жовтня 2014), The Ukrainian Biochemical Journal, 2014, V. 86, №5 (Supplement 1), P. 37-38.

 

18. Соколик В.В. Кодирование вторичной структуры и структурного шаблона белка в геноме эукариот / НАУЧНЫЙ ФОНД "БИОЛОГ", Ежемесячный научный журнал. – 2014. – № 3. – С. 73-76.


19. Соколик В.В. Никакой дополнительной информации, большей, чем та, что содержится в ДНК, для сворачивания белка не требуется / Ukr. Biochem. J., 2014. – 86, 5 (Suppl. 1) Матеріали ХІ Укріїнського біохімічного конгресу (06-10 жовтня 2014), Київ, c. 37-38

 

20. Соколик В.В. Предсказание пространственной структуры белка insilico на основе информации генома и геометрического алгоритма – альтернатива  квантово-механическому подходу // Материалы Международной научной конференции «Математическое и компьютерное моделирование в биологии и химии. Перспективыразвития» (28-30 мая 2012), Казань. – 2012. – С.155-158.


21. Sokolik V.V. Protein is coded in genome and synthesized in ribosomes as a structural template of a rotameric version sequence of peptide bound configuration // The International Moscow Conference on Computational Molecular Biology, МССМВ-11, Moscow. – 2011. – P. 347–348.

22. Sokolik V.V. Algorithm of protein structural template decoding according to its determined nucleotide sequence // Fist International Conference “Fundamental medicine: From scalpel toward Genome, Proteome and Lipidome”, Pax Grid Virtual Conferences, Kazan. – 2011. – P. 117–119.

23. Sokolik V.V. Modeling of the individual structural template of protein on determining it nucleotide sequences // VII Международнаяконференцияпобиоинформатике, регуляцииструктурыгеномовисистемнойбиологии. BGRS\SB-2010, Новосибирск. – 2010. – С. 275.

24. Соколик В.В. Способ моделирования пространственной структуры белка по детерминирующей его нуклеотидной последовательности // Биофизический вестник. – 2010. – Вып. 24 (1). – С. 31-45.


25. Соколик В.В. Геометрия аминокислот / Материалы XV Международной научно-практической конференции «Наука и современность – 2012» (НС-15), (14 марта 2012), Новосибирск. – 2012. – С. 13-18.


26. Соколик В.В. Загадка изоакцепторных тРНК / Материалы II Всероссийской Интернет-Конференции «Актуальные проблемы биохимии и бионанотехнологии» (15-18 ноября 2011), Казань, Россия. – С. 11-15.


27. Соколик В.В. Кодирование торсионного угла ω пептидной связи в белке / IV Международная конфер. "Актуальные проблемы биологии, нанотехнологий и медицины". (22-25 сентября 2011), Ростов-на-Дону. – С. 60-61.

 

28. Соколик В.В. Карта Рамачандрана: ротамерия пептидной связи и фолдинг белка / Материалы VII Международной научно-технической конференции «Актуальні питання біологічної фізики і хімії». Тезисы докладов БФФХ-2011 (26-30 апреля 2011 г.), Севастополь.– С.137-139.

 

29. Соколик В.В. Ротамерные варианты конфигурации пептидной связи и их кодирование в геноме / Матеріали X Українського біохімічного з’їзду. Тези доповідей (13—17 вересня 2010 р.), Одеса. – С. 105-106.


30. Соколик В.В. Пространственная структура гомологов основного актина и α-актина 1 различна / Сборник материалов I Международной научно-практической конференции «Наука и современность – 2010» в 3-х частях / Под общ. ред. С.С. Чернова - Новосибирск: «СИБПРИНТ», 2010. – 278 с. Ч. 1, С. 41-46.


32. Соколик В.В. Моделирование пространственной структуры белка по детерминирующей его нуклеотидной последовательности / Материалы VI Международной научно-технической конференции «Актуальні питання теоретичної і прикладної біофізики, фізики і хімії». Тезисы докладов БФФХ-2010 (26-30 апреля 2010 г.), T.1, Севастополь.– С.201-204.

 

32. Cоколик В.В. Кодирование вторичной структуры и структурного шаблона белка в геноме эукариот / НАУЧНЫЙ ФОНД "БИОЛОГ", Ежемесячный научный журнал. – 2014. – № 3. – С. 73-76.


33. Соколик В.В. Никакой дополнительной информации, большей, чем та, что содержится в ДНК, для сворачивания белка не требуется / Ukr. Biochem. J., 2014. – 86, 5 (Suppl. 1) Матеріали ХІ Укріїнського біохімічного конгресу (06-10 жовтня 2014), Київ, c. 37-38


34. Соколик В.В. Предсказание пространственной структуры белка insilico на основе информации генома и геометрического алгоритма – альтернатива  квантово-механическому подходу // Материалы Международной научной конференции «Математическое и компьютерное моделирование в биологии и химии. Перспективыразвития» (28-30 мая 2012), Казань. – 2012. – С.155-158.

35. Sokolik V.V. Algorithm of protein structural template decoding according to its determined nucleotide sequence // Fist International Conference “Fundamental medicine: From scalpel toward Genome, Proteome and Lipidome”, Pax Grid Virtual Conferences, Kazan. – 2011. – P. 117–119.


36. Sokolik V.V. Modeling of the individual structural template of protein on determining it nucleotide sequences // VII Международнаяконференцияпобиоинформатике, регуляцииструктурыгеномовисистемнойбиологии. BGRS\SB-2010, Новосибирск. – 2010. – С. 275.


37. Соколик В.В. Способ моделирования пространственной структуры белка по детерминирующей его нуклеотидной последовательности // Биофизический вестник. – 2010. – Вып. 24 (1). – С. 31-45.


38. Соколик В.В. Геометрия аминокислот / Материалы XV Международной научно-практической конференции «Наука и современность – 2012» (НС-15), (14 марта 2012), Новосибирск. – 2012. – С. 13-18.


39. Соколик В.В. Загадка изоакцепторных тРНК / Материалы II Всероссийской Интернет-Конференции «Актуальные проблемы биохимии и бионанотехнологии» (15-18 ноября 2011), Казань, Россия. – С. 11-15.


40. Соколик В.В. Кодирование торсионного угла ω пептидной связи в белке / IV Международная конфер. "Актуальные проблемы биологии, нанотехнологий и медицины". (22-25 сентября 2011), Ростов-на-Дону. – С. 60-61.


41. Соколик В.В. Карта Рамачандрана: ротамерия пептидной связи и фолдинг белка / Материалы VII Международной научно-технической конференции «Актуальні питання біологічної фізики і хімії». Тезисы докладов БФФХ-2011 (26-30 апреля 2011 г.), Севастополь.– С.137-139.


42. Соколик В.В. Ротамерные варианты конфигурации пептидной связи и их кодирование в геноме / Матеріали X Українського біохімічного з’їзду. Тези доповідей (13—17 вересня 2010 р.), Одеса. – С. 105-106.


43. Соколик В.В. Пространственная структура гомологов основного актина и α-актина 1 различна / Сборник материалов I Международной научно-практической конференции «Наука и современность – 2010» в 3-х частях / Под общ. ред. С.С. Чернова - Новосибирск: «СИБПРИНТ», 2010. – 278 с. Ч. 1, С. 41-46.


Другие публикации В.В.Соколик






Шедевры белковой архтектуры

Другие примеры:  1234567 ...........

Высоко периодичные структуры белков

РСА : что мы видим?


ПРОГРАММИРУЕМ ДЕКОДЕР кода белка в 3D структуру

                       Алгоритмы


КРАТКАЯ  2D диаграмма ПИКОТЕХ

Красный - альфа-спираль.
Оранжевый - 310-спираль.

Синий - пи-спираль.
Розовый - одиночный код альфа/310 спиралей.
Бирюзовый - одиночный код  пи-спирали.
Тёмно-зеленый - бета-спираль.

Зелёный - одиночный код бета-спирали
Сиреневый - метиониновая спираль. У неё более крупный шаг "резьбы", чем у обычной альфа-спирали.

Жёлтый - сустав пролина
Черный в сокращённом представлении и белый в развернутом означают либо неизвестный код, либо конец трансляции.
Циклическое повторение цветов (композиционных кодов) - программная спираль.


Программные спирали - повторение последовательности композиций. Например, один код альфа-спирали, затем один код пи-спирали. n(35) задаёт программную спираль, а n3 или n5 - простые спирали (пи-спираль и альфа-310-спираль).
232323 - программная n(23)-спираль
141414 - программная n(14)-спираль











0001-KAE8283720-1-P-0-b1

 Фрактальная 585557-спираль с периодом 6.


 


0002-KAI4874617-1-P-0-b1

 Фрактальная 1114477-спираль с периодом 7.



 0003-KAH3791119-1-P-0-b1

 Маленький белок с длинной альфа-спиралью (красный).




0003-RUS81114-1-P-0-b1


Переходы фрактальных спиралей разных типов.





0004-CAD7264879-1-P-0-b1

 Фрактальная 33333555755887775-спираль с периодом 17




0005-KAI8742171-1-P-0-b1

 Фрактальная 8755755877P-спираль с периодом 11.



0045-KAI8742211-1-P-0-b1

Этот маленький белок состоит из нескольких периодов фрактальной спирали, состоящей из альфа-спиральных участков (красный), 310-спиральных участков (оранжевый) и пи-спиральных участков (синий).



 

0047-KAF7637509-1-P-0-b1

 Фрактальная 3333333P77P77P77875-спираль с периодом 19.

 



0008-KAE8283727-1-P-0-b1

 Фрактальная квази-спираль с типовым периодом 7.


 


0012-CAG2238035-1-P-0-b1

 Фрактальная 33333335587877558-спираль с периодом 17.



 

0015-KAF6208734-1-P-0-b1

 Фрактальная квазиспираль с типовым периодом 19.



 

0087-KAI8742253-1-P-0-b1

Фрактальная спираль с дробным периодом (~14.7) переходит в 411617P75755577-спираль с периодом 15.


 

0110-KAE8283829-1-P-0-b1

 Фазированный фрактал (квази-спираль)



0174-KAF6208890-1-P-0-b1

 Фрактальная 3333311114885575-спираль с периодом 16.



 

0349-KAE8621205-1-P-0-b1

 Фрактальная спираль с периодом 32.


0404-KAI8742570-1-P-0-b1

 Фрактальная спираль с периодом 21.



0528-KAI8742694-1-P-0-b1

 Фрактальная 111181111757575577-спираль с периодом 18.


 

0505-KAE8621361-1-P-0-b1

 Фрактальная спираль с периодом 29.


 

1184-KAE8622042-1-P-0-b1

 Фрактальная спираль с периодом 76.


0133-KAH3791249-1-P-0-b1

Фрактальная Q-спираль (75-спираль Кушелева) переходит в бета-спираль (L-спираль).

 

0208-KAF6208924-1-P-0-b1

 Фрактальная квазиспираль в стиле куфи.



0002-KAI8767515-1-P-0-b1

 Фрактальная 5557555P75577-спираль с периодом 13.



0015-KAF6208734-1-P-0-b1

 Фрактальная квазиспираль с типовым периодом 19.





ССЫЛКА НА ВИДЕО





Программируем декодер кода белка в 3D структуру


ССЫЛКА НА ВИДЕО







Модель фрактальной спирали из суставно-стержневого конструктора.



 

Подробнее

 

 

Это - фрагмент фрактальной спирали, состоящий из двух прямых участков пи-спирали (по 10 аминокислотных остатков), соединённых прямым альфа-спиральным усастком.


 Вид вдоль оси одного из пи-спиральных участков.



Красной трубочкой отмечена единственная водородная связь, стабилизирующая альфа-спиральный участок, т.е. соединяющая его первый остаток с 4-ым.





Связи С-Сальфа показаны белыми трубочками. На участках пи-спирали эти трубочки с голубыми и зелеными полосками, а на участке альфа-спирали эти трубочки с красными и желтыми полосками.


Модель из суставно-стержневого конструктора показала, что угол между осями симметрии пи-спиральных участков примерно 120 градусов. При этом оси не пересекаются, а скрещиваются. Интересно будет посмотреть пространственную модель всей фрактальной спирали белка KAI8778976.1 Предварительный анализ показал, что фрактальная спираль имеет один излом, образуя острый угол. Возможно, что из таких субъединиц может сложиться звездчатая призма, имеющая центральный канал большого сечения и боковые каналы по числу лучей звезды.


Ранее в рассылке были опубликованы модели фрактальных спиралей белков, которые могли являться спиральными физико-химическими реакторами ультравысокого давления. На этот раз может оказаться, что существуют и звёздчатые реакторы гипервысокого давления. Это связано с тем, что центральный канал звездчатой призмы окружен более мелкими каналами, которые могут выдерживать давление первого уровня. При этом центральный канал может выдержать более высокое давление, т.к. окружён каналами высокого давления. Это мы попытаемся проверить в ближайшем будущем.



Компактная 3D графика структурного шаблона аминокислоных остатков



    



Компьютерная 2D  модель белка 0318_KAI 8118976.1


А теперь попробуем построить пространственную модель по этой схеме вторичной структуры. Красным цветом выделены альфа-спиральные участки, синим - пи-спиральные. 



Так выглядит эта фрактальная спираль, состоящая из участков альфа- и пи-спиралей. Вид вдоль оси симметрии  Каждый участок альфа-спирали состоит из 4 остатков, а каждый участок пи-спирали из 10.




Та же фрактальная 4-альфа-10-пи-спираль. Вид сбоку. Виртуальный суставно-стержневой конструктор Кушелева-Дементьевой позволяет уточнять транспозиционные углы на изломах спиралей. Эта юстировка углов заменяет физическое моделирование под названием "докинг". Соседние витки фрактальной спирали в этом процессе стабилизируются межвитковыми связями, образованными радикалами аминокислотных остатков.



Пространственные модели  57 (альфа-пи) Q-спирали 


Кольцегранная



 


Уточнение углов с помощью  3D-принтера

Модельные эксперименты на 3D-принтере



Компьютерная модель спирали Кушелева (фрактальной 75-спирали), выполненная на основе суставно-стержневого конструктора Кушелева-Дементьевой.

 

Параметры Q-спирали 5.9 остатков на виток и соответственно угол поворота остатка вокруг оси спирали 61 градус получились при изменении транспозиционного угла остатка с кодом 7 на минус 20 градусов.


Q-helices

Q-спирали